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Molecular economy of nature with two thyrotropins 
from different parts of the pituitary: pars tuberalis 
thyroid-stimulating hormone and pars distalis  
thyroid-stimulating hormone 

Sibel Ertek

A b s t r a c t

Thyrotropin (TSH) is classically known to be regulated by negative feedback 
from thyroid hormones and stimulated by thyrotropin-releasing hormone 
(TRH) from the hypothalamus. At the end of the 1990s, studies showed that 
thyrotroph cells from the pars tuberalis (PT) did not have TRH receptors and 
their TSH regulation was independent from TRH stimulation. Instead, PT-thy-
rotroph cells were shown to have melatonin-1 (MT-1) receptors and mela-
tonin secretion from the pineal gland stimulates TSH-b subunit formation in 
PT. Electron microscopy examinations also revealed some important differ-
ences between PT and pars distalis (PD) thyrotrophs. PT-TSH also have low 
bioactivity in the peripheral circulation. Studies showed that they have dif-
ferent glycosylations and PT-TSH forms macro-TSH complexes in the periph-
ery and has a  longer half-life. Photoperiodism affects LH levels in animals 
via decreased melatonin causing increased TSH-b subunit expression and 
induction of deiodinase-2 (DIO-2) in the brain. Mammals need a light stim-
ulus carried into the suprachiasmatic nucleus (which is a  circadian clock) 
and then transferred to the pineal gland to synthesize melatonin, but birds 
have deep brain receptors and they are stimulated directly by light stimuli 
to have increased PT-TSH, without the need for melatonin. Photoperiodic 
regulations via TSH and DIO 2/3 also have a role in appetite, seasonal im-
mune regulation, food intake and nest-making behaviour in animals. Since 
humans have no clear seasonal breeding period, such studies as recent ‘’do-
mestication locus’’ studies in poultry are interesting. PT-TSH that works like 
a neurotransmitter in the brain may become an important target for future 
studies about humans. 

Key words: pars distalis, pars tuberalis, thyrotropin, pars tuberalis 
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Introduction

Thyrotropin (TSH, thyroid-stimulating hormone) is a  heterodimeric 
glycoprotein hormone, composed of α and b subunits. TSH level in pe-
ripheral blood is an important predictor and it is generally the first step 
screening test for thyroid functions, but even in the normal range it may 
be affected by some non-thyroidal situations in the body [1] and may 
affect thyroid tissue even after thyroid operations [2, 3]. The α subunit 
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is common in TSH, FSH and LH, whereas b-sub-
units are different in these pituitary hormones. 
TSH stimulates the thyrocytes via the G-protein 
coupled receptor and causes production of thy-
roid hormones [4]. Regulation of TSH synthesis 
occurs via negative feedback of thyroid hormones 
and stimulation by thyrotropin-releasing hormone 
(TRH) from the hypothalamus [5]. Adenohypophy-
sis has 2 main parts in humans: the pars distalis 
(PD) and pars tuberalis (PT). Thyrotroph cells of 
PD and PT differ morphologically; PT thyrotrophs 
have fewer granules, but more Golgi, whereas PD 
thyrotrophs have more dense secretory granules 
on electron microscopy. In the late 1990s, anoth-
er important point was revealed; studies showed 
that PT thyrotrophs do not have TRH receptors 
and TSH secretion in PT is independent from TRH 
in these cells [6]. Instead of TRH receptors, PT thy-
rotroph cells have the MT-1 melatonin receptor 
and TSH secretion from PT cells is regulated by 
melatonin released by photoperiodic stimuli [7, 8]. 
Melatonin suppresses TSH-b chain expression via 
MT-1 receptors in PT-thyrotrophs [9, 10]. In a study 
with C57BL mice that have a defect in the mela-
tonin gene causing an intensified effect of exter-
nal melatonin, TSH secretion was decreased by 
melatonin injection in PT thyrotrophs, whereas it 
had no effect in PD cells and TSH decreased in the 
periphery after melatonin injection [11]. It was an 
interesting finding that although peripheral TSH 
was decreased, serum T4 level was not affected, 
indicating lower bioactivity of TSH from PT. 

Thyroid-stimulating hormone glycoforms  

Intrapituitary and circulating TSH consists of 
several isoforms with heterogenous carbohydrate 
branching with variable terminal residues that 
cause differences in ability to interact with spe-
cific regions of the TSH receptor. Glycosylation is 
an important step to regulate TSH bio- and immu-
no-activity. 

Primary hypothyroidism, thyroid hormone resis-
tance and TRH administration increase oligosaccha-
ride addition, resulting in increased bioactivity of 
TSH [12, 13]. Central hypothyroidism [14], TSH-pro-
ducing pituitary adenomas and euthyroid sick syn-
drome also cause different TSH-glycosylation pat-
terns [15]. Changes in sulphation and sialylation of 
oligosaccharide residues could also be seen [16, 17]. 
Decreased sialylation caused increased bioactivity 
[18]. Highly sialylated TSH has prolonged half-life in 
serum but has low intrinsic bioactivity. 

Studies of Ikegami et al. showed that glycosyla-
tion of PD-TSH and PT-TSH differs. PD-TSH has 
biantennary glycans whereas PT-TSH has multi-
branched, sialylated N-glycans. Tissue-specific 
expression of glycosyltransferases causes these 
differences in oligosaccharide chains [11].

Photoperiodism

The pineal gland (epiphysis), which was thought 
to be the ”seat of the soul” by Descartes centuries 
ago, is important in regulation of the circadian 
rhythm in mammals. Knowledge of light coming 
from the eyes passes through the suprachiasmat-
ic nucleus and arrives at the pineal gland to reg-
ulate melatonin synthesis. Melatonin is secreted 
in darkness and it is the signal for the ”length of 
the night” to the whole brain [19]. All creatures 
make necessary changes in their physiology and 
behaviours (hibernation, breeding, etc) to adapt 
to climate changes and organisms mostly take 
”length of the day” into consideration as knowl-
edge of seasonal changes, instead of tempera-
ture, because the temperature may not always 
reflect the season correctly. 

Small mammals and birds breed during spring 
and summer months and they are known as ”long 
day breeders”. Their pregnancy or incubation pe-
riods are short and their babies are born within 
spring or early summer. 

Bigger mammals such as sheep and goats 
breed in autumn. They have a  longer gestation 
and give birth in summer, so they are ”short day 
breeders”. 

In all vertebrates reproductive activity is reg-
ulated by the hypothalamo-hypophyseal-gonad 
axis. In birds, photoperiodism changes gonadal 
volumes up to 100 times, whereas in mammals 
this is not more than up to a few times [20]. 

When melatonin-proficient CBA mice were 
raised under short-day (SD) conditions, expression 
of TSH-b was suppressed in the PT, but not in the 
PD. When T3 was injected daily into these mice to 
suppress PD-TSH, PD-TSH-b mRNA and serum TSH 
decreased. When these mice were transferred to 
long day (LD) conditions to induce production of 
PT-TSH, PT-TSH-b and serum TSH increased but se-
rum T4 did not change [11]. Therefore PT-TSH was 
shown to have low bioactivity at the periphery. 
To analyse differences in glycosylations of these 
two molecules, the same team performed west-
ern blotting. PD-TSH (37 kDa) and PT-TSH (40 kDa)  
had different molecular weights (MW), but when 
deglycosylated their MW were same. PT-TSH had 
multi-branched sialylated N-glycans, and it was 
found that these two molecules had a difference 
in glycosylation. PT-TSH was shown to have low 
bioactivity, by producing a  macro-molecule by 
binding with IgG2b and albumin [21, 22]. Studies 
on Chinese hamster ovary cell (CHO) lines showed 
that these two TSHs caused the same cAMP ac-
cumulation, but TSHs from SD-breeder (higher 
PD-TSH) and LD-breeder (higher PT-TSH) rats had 
different activities towards these cell lines, and 
also macro-TSH had very low activity in humans 
and rats [21, 23]. 
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PT-TSH has longer bioactivity due to decreased 
hepatic clearance because of sialylation, albumin 
covalent, probable transglutamin covalent binding 
[24] (Figure 1).

Thyroid hormones, seasons and reproduction

In most birds, mammals and fish, thyroid 
hormones are known to be related to seasonal 
reproductive functions. In some species, thyroid-
ectomy prevents seasonal testicular growth and 
L-thyroxine replacement mimics the long-day ef-
fect by suppressing PD-TSH but does not affect 
PT-TSH [25–27]. The ideal animal model for pho-
toperiodism studies is the Japanese quail (Cotur-
nix japonica), which has rapid responses. Local 
illumination of the mediobasal hypothalamus 
(MBH) induces testicular growth and lesions of 
this region block the photoperiodic response of 
LH secretion and gonadal development in these 
animals [28–31]. Because in birds, for photoperi-
odism melatonin is not needed, birds have deep 
brain photoreceptors and PT-TSH is directly stim-
ulated; therefore the pineal gland is not involved, 
as has been known for many years [32, 33]. For 
example, local illumination of the septal region 
of the telencephalon or the MBH using radiolu-
minous-painted beads caused testicular growth 
in quail, suggesting the existence of deep brain 
photoreceptors in these regions [34, 35]. Inter-
estingly, mammalian neural tissue opsin 5 may 

be a deep brain photoreceptive molecule in the 
quail brain to detect light [36]. 

Yoshimura et al. reported induction of the 
deiodinase-2 (DIO-2) gene and suppression of 
the deiodinase-3 (DIO-3) gene by LD stimuli, in 
ependymal cells lining ventrolateral walls of the 
third ventricle within MBH, by using differential 
subtractive hybridization analysis [37, 38]. Among 
these cells, tanycytes respond to PT-TSH. DIO-2 
enzyme increases active thyroid hormone triiodo-
thyronine (T3) production, whereas DIO-3 en-
codes thyroid hormone-inactivating enzyme that 
metabolizes T4 to inactive reverse T3 (rT3) and 
3,3’-diiodothyronine (T2). T3 concentration with-
in the MBH is about 10-fold higher under LD con-
ditions. Intracerebroventricular T3 infusion in SD 
conditions induced testicular development while 
infusion of the DIO-2 inhibitor iopanoic acid in 
LD conditions attenuated testicular development 
[37]. This photoperiodic regulation of DIO-2 and 
DIO-3 has also been observed in some other avian 
species [39–41] and in some mammals [42–46]. 
Activation of thyroid hormone within the MBH de-
codes the LD information to the brain. Therefore, 
daily T3 subcutaneous injections induce testicu-
lar development and chronic replacement of T3 in 
the hypothalamus prevents the onset of testicular 
regression in LD-breeding Siberian hamsters. In 
contrast, in the SD breeders, LD-induced DIO-2 ap-
pears to convert T4 to T3 to terminate the breed-

Figure 1. PT-TSH and PD-TSH and actions. PD-TSH stimulates the thyroid gland and is regulated by TRH and neg-
ative feedback of thyroid hormones, in accordance with classical endocrinology knowledge. PT-TSH does not have 
a significant peripheral role but mainly acts on the hypothalamus, causing seasonal changes. The action of PT-TSH 
needs melatonin in mammals, but PT-TSH secretion is directly activated by light affecting deep brain receptors in 
birds without a melatonin signal (adapted and modified from [11])
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ing season. In addition, the LD stimulus induces 
the expression of DIO-2, and T4 administration 
terminates the breeding season via a decrease in 
serum LH [47, 48] (Figure 2).

In quail, the photoperiodic switching of DIO-2 
and DIO-3 precedes photoperiodic induction of go-
nadotropin release by nearly 4 h [49]. Before this 
switching, the gene encoding the TSH-b subunit is 
induced. In the ependymal cells TSH receptors are 
expressed. Several rhodopsin families are involved 
in deep-brain-sensing of light in avians, including 
rhodopsin, melanopsin, neuropsin, and vertebrate 
ancient opsin [50]. However, in mammals eyes are 
the only photoreceptor organ. Therefore removal 
of eyes abolishes the photoperiodic response [19]. 
Light information from the eye is transferred to 
the suprachiasmatic nucleus (circardian pacemak-
er) and then to the pineal gland. In all mammals, 
pinealectomy abolishes seasonal responses and 
melatonin administration restores them. 

Melatonin has melatonin-1 (MT1) and mela-
tonin-2 (MT2) receptors. But these melatonin re-
ceptors are not expressed in the ependymal cells 
where DIO-2 and DIO-3 are expressed. The MT1 
receptor is expressed in the thyrotroph cells of 
the pars tuberalis [7]. Therefore PT-TSH probably 
mediates the influence of melatonin on DIO-2/
DIO-3 switching in mammals. As expected, clear 
photoperiodic regulation of TSH-b, DIO-2, and 
DIO-3 was observed in the melatonin-producing 
CBA mice strain, while such responses were not 
observed in the melatonin-deficient C57BL strain 

[9]. In addition, daily intraperitoneal melatonin in-
jections mimicked the effect of SD conditions on 
the expression of these genes. 

Nearly two decades ago thyroid hormones were 
known to be lipophilic and to traverse cellular 
membranes by passive diffusion. In fact in mam-
mals, some members of the organic anion trans-
porting polypeptide (Oatp) family are involved in 
transportation. Oatp1c1 has been shown to be 
a  highly specific transporter of T4 [51]. Another 
hormone transporter, monocarboxylate transport-
er 8 (MCT 8), has been found in cells for T4 trans-
port, including cells of mediobasal hypothalamus 
ependymal cells of hamsters, and its regulation 
depends on SD conditions, without the need for 
T4 [51–54].

Intracerebral T3 and gonadotropin interaction

Thyroid hormone receptors are expressed in 
the median eminence and the ultrastructure of 
the median eminence was examined via elec-
tron microscopy to understand their target site. 
Dynamic morphological changes were observed 
between gonadotropin releasing hormone (GnRH) 
nerve terminals and glial endfeet in the median 
eminence [55]. In SD conditions GnRH nerve ter-
minals are encased by the endfeet of glial pro-
cesses and do not contact the basal lamina, while 
many GnRH terminals are in close proximity to the 
basal lamina under LD conditions. It has been pro-
posed that the nerve terminals of hypothalamic 

Figure 2. Deiodinases. Deiodinases in brain tissue regulate active thyroid hormone levels and related hypothalamic 
effects. DIO-2 enzyme increases T3 production and intracerebroventricular T3 induces testicular development in 
LD-breeder animals. Photoperiodic switching of DIO-2 to DIO-3 precedes gonadotropin changes in mammals and 
birds (see [38])
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neurons are required to contact the pericapillary 
space directly for the secretion of the hypotha-
lamic neurohormone from the hypothalamus into 
the portal capillary [56]. Morphological changes 
between the GnRH nerve terminals and endfeet 
of glial processes are observed in SD quail treated 
with T3 to stimulate testicular growth and gonad-
otropin-inhibitory hormone (GnIH) may interfere 
with this process [57]. Therefore these morpho-
logical changes appear to regulate or modulate 
the seasonal GnRH secretion from the median 
eminence. It is also interesting to note that the 
seasonal plasticity within the GnRH system is re-
ported in ewes [58]. 

Other non-thyroidal photoperiodic effects  
of thyroid hormone

SD conditions increase the peripheral leuko-
cyte count in hamsters while supressing T3-relat-
ed RFamide-related peptide-3 mRNA expression, 
stimulating splenic IL-1b mRNA expression and 
decreasing splenic TNF-α mRNA expression [59]. 
Studies in gonadectomized animals show that 
neuroimmune connections that underlie pho-
toperiodic immune system and disease-related 
behaviours (anorexia, weight loss, moulting, de-
creased nest-forming behaviour) are related to 
pineal gland-gonadal hormones and T3 [60, 61]. 
Photoperiodic DIO-3 transcription regulation af-
fects T3 stimulation in lymphoid cells and regu-
lates seasonal immune system adaptations [62]. 
Also food intake and appetite-related mechanisms 
need local T3-paraventricular nucleus and arcuate 
nucleus relationships.

Importance of endocrine mechanisms in 
photoregulation for future

The photoperiodic signalling pathway could 
be a  potential target in domestication, because 
seasonal breeding is a  rate-limiting factor in an-
imal procreation. TSH receptor (TSHR) could be 
a domestication locus in chicken [63]. The genes 
involved in the photoperiodic signalling pathway 
could be good targets for domestication and con-
version of LD animals to SD animals or vice versa. 
Therefore, the mechanism that differs in LD and 
SD breeders with the same T3 stimulation also 
need to be elucidated with further studies.

For human beings, the importance of these 
TSH-related mechanisms could be important for 
understanding the effects of thyroid-related drugs 
in fetal brain, melatonin-related effects in space 
studies, neurological mechanisms in thyroid hor-
mone resistance syndromes and possible use in  
in vitro fertilisation technology and human re-
production. In human life there is no preferred 
seasonal breeding period, but effects of thyroid 
hormone especially on developing fetal brain and 

possible benefits of knowing the effects of differ-
ent TSHs on different cells for improving fertilisa-
tion could be studied in future. There are still no 
data or studies on the clinical importance and ap-
plication of these TSH-related findings to humans. 

Although photoperiodic adaptations are more 
evident in other mammals, presence of such cas-
cades in humans is an interesting topic and re-
cently important reviews were published about 
the role of hypothalamic and pituitary circuits in 
seasonal rhythms, related to the stress response 
and immunity and even colour perception in mam-
mals [64–66]. The pars tuberalis seems to have an 
important role in seasonal adaptation, hormonal 
and metabolic responses and immunity via tuber-
alins and various molecules interacting with oth-
er brain areas and systems [65]. This review tries 
to bring together the available knowledge about 
the role of the pars tuberalis in photoperiodism 
and the role of the presence of two different TSHs 
in that interaction. It is interesting to reveal the 
molecular economy of nature with two different 
actions of the same molecule on different sites, 
behind clinical practice and classically known TSH 
action. Tissue-specific glycosylation could change 
the effect of a well-known molecule and may pre-
vent or change some signals in vivo. 
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